Abstract
Abstract
We analyse the electrical and optical properties of single GaN nanowire p–n junctions grown by plasma‐assisted molecular-beam epitaxy using magnesium and silicon as doping sources. Different junction architectures having either a n-base or a p-base structure are compared using optical and electrical analyses. Electron-beam induced current (EBIC) microscopy of the nanowires shows that in the case of a n-base p–n junction the parasitic radial growth enhanced by the magnesium (Mg) doping leads to a mixed axial-radial behaviour with strong wire-to-wire fluctuations of the junction position and shape. By reverting the doping order p-base p–n junctions with a purely axial well-defined structure and a low wire-to-wire dispersion are achieved. The good optical quality of the top n nanowire segment grown on a p-doped stem is preserved. A hole concentration in the p-doped segment exceeding 1018 cm−3 was extracted from EBIC mapping and photoluminescence analyses. This high concentration is reached without degrading the nanowire morphology.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献