Affiliation:
1. Department of Electrical and Computer Engineering McGill University 3480 University Street Montreal Quebec H3A 0E9 Canada
Abstract
AbstractSemiconductor p‐n heterojunctions are important building blocks for modern electronic and photonic devices. Further combining semiconductor p‐n heterojunctions with light and electrolyte environment, interesting photoelectrochemical (PEC) phenomena can occur, which enriches the design principles of multifunctional devices. In fact, recent years have witnessed the emergence of PEC‐type photonic devices. For PEC‐type photonic devices, a key to realize multifunctionality is to control the photocurrent polarity of the photoelectrode. In this study, an abnormal photocurrent is reported from p‐InGaN/n‐GaN nanowire heterojunctions under a blue light illumination: although n‐GaN is transparent to the blue light (and thus optical absorption mainly occurs in p‐InGaN) and p‐InGaN in principle can only give negative PEC photocurrent, the detailed experiments show that positive PEC photocurrent can be generated from the p‐InGaN segment due to the existence of the built‐in electric field at the p‐n junction. This study shows a new route to control the photocurrent polarity in a semiconductor p‐n heterojunction photoelectrode. This unveiled role of the built‐in electric field is expected to impact the design of emerging PEC‐type photonic devices, as well as other novel photonic and electronic devices based on semiconductor nanowire p‐n heterojunctions.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献