Abnormal Photocurrent in Semiconductor p‐n Heterojunctions: Toward Multifunctional Photoelectrochemical‐Type Photonic Devices and Beyond

Author:

Fathabadi Milad1,Zhao Songrui1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering McGill University 3480 University Street Montreal Quebec H3A 0E9 Canada

Abstract

AbstractSemiconductor p‐n heterojunctions are important building blocks for modern electronic and photonic devices. Further combining semiconductor p‐n heterojunctions with light and electrolyte environment, interesting photoelectrochemical (PEC) phenomena can occur, which enriches the design principles of multifunctional devices. In fact, recent years have witnessed the emergence of PEC‐type photonic devices. For PEC‐type photonic devices, a key to realize multifunctionality is to control the photocurrent polarity of the photoelectrode. In this study, an abnormal photocurrent is reported from p‐InGaN/n‐GaN nanowire heterojunctions under a blue light illumination: although n‐GaN is transparent to the blue light (and thus optical absorption mainly occurs in p‐InGaN) and p‐InGaN in principle can only give negative PEC photocurrent, the detailed experiments show that positive PEC photocurrent can be generated from the p‐InGaN segment due to the existence of the built‐in electric field at the p‐n junction. This study shows a new route to control the photocurrent polarity in a semiconductor p‐n heterojunction photoelectrode. This unveiled role of the built‐in electric field is expected to impact the design of emerging PEC‐type photonic devices, as well as other novel photonic and electronic devices based on semiconductor nanowire p‐n heterojunctions.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3