Breaking the Built‐In Electric Field Barrier in p–n Heterojunction for Self‐Powered, Wavelength Distinguishable Photoelectrochemical Photodetectors: Toward Low Power Consumption and Secure Underwater Wireless Sensor Network

Author:

Fathabadi Milad1,Yin Yangyuan2,Li Shichen1,Zhao Songrui1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering McGill University 3480 University Street Montreal Quebec H3A 0E9 Canada

2. School of Microelectronics South China University of Technology Guangzhou 510640 China

Abstract

AbstractSelf‐powered, light wavelength distinguishable photodetectors (PDs) are appealing components to build a robust, secure, and low energy consumption underwater wireless sensor network (UWSN). However, achieving such devices is extremely difficult even today. In this context, the first self‐powered, light wavelength distinguishable PDs with photoelectrochemical (PEC) principles and using tunnel junction (TJ) to overcome the technical hurdles for self‐powered, light wavelength distinguishable PEC‐PDs with p–n junction working electrode is reported. For such devices, a single photoelectrode is used, that is, one photoelectrode is able to distinguish different light wavelengths without using any external electrical power, and they are able to distinguish light wavelengths in both the ultraviolet (UV) and blue wavelength ranges. High responsivities reaching mA/W range and ultrafast response time with less than 10 ms are achieved in self‐powered operation mode. Moreover, such devices are able to operate not only in acidic but also in NaCl electrolyte, making them potentially attractive for applications in ocean environment. In the end, it is demonstrated that leveraging such PEC‐PDs, excellent data security can be achieved in the data communication mimicking that in an UWSN in ocean environment. This study not only represents a breakthrough in PDs, but also significantly advances the development of UWSNs, especially for ocean environment.

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3