Hybrid simulations of beta-induced Alfvén eigenmode with reversed safety factor profile

Author:

Duan Sizhe,Fu Guoyong,Cai HuishanORCID

Abstract

Abstract Based on the experimental parameters in HL-2A tokamak, hybrid simulations have been carried out to investigate the linear stability and nonlinear dynamics of BAE. It is found that the (m/n=3/2) beta-incuced Alfvén eigenmode (BAE) is excited by co-passing energetic ions with qmin=1.5 in linear simulation, and the mode frequency is consistent with experimental meuasurement. The simulation results show that the energetic ions βh, the injection velocity v0 and orbit width parameter ρh of energetic ions are important parameters determining the drive of BAE. Furthermore, the effect of qmin (with fixed shape of q profile) is studied, and it is found that: when qmin ≤ 1.50, the excited modes are BAEs, which are located near q=1.50 rational surfaces; when qmin > 1.50, the excited modes are simillar to the reversed-shear Alfvén eigenmodes (RSAEs), which are mainly localized around q=qmin surfaces. Nonlinear simulation results show that the nonlinear dynamics of BAE is sensitive to the EP drive. For strongly driven case, firstly, redistribution and transport of engetic ions are trigged by (m/n=3/2) BAE, which raised the radial gradient of energetic ions distribution function near q=2 rational surface, and then an EPM (m/n=4/2) is driven in nonlinear phase. Finally, these two instabilities triggered significant redistribution of energetic ions, which results in the twice-repeated and mostly-downward frequency chirping of (m/n=3/2) BAE. For weakly driven case, there are no (m/n=4/2) EPM being driven and twice-repeated chirping in nonlinear phase, since the radial gradient near q=2 rational surface is small and almost unchanged.

Funder

Collaborative Innovation Program of Hefei Science Center CAS

Fundamental Research Funds for the Central Universities

National Key R&D Program of China

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3