Studies of edge poloidal rotation and turbulence momentum transport during divertor detachment on HL-2A tokamak

Author:

Long Ting,Ke Rui,Wu Ting,Gao Jin-Ming,Cai Lai-Zhong,Wang Zhan-Hui,Xu Min,

Abstract

In a magnetic confinement fusion device, the plasma undergoing nuclear fusion reaction must be maintained in a high-temperature and high-density confinement state for a long enough time to release high energy, while the heat loads on the divertor target plates need to be reduced to avoid damage to wall at the same time. The latter is one of the key challenges of ITER and commercial fusion reactors in future. Divertor detachment provides an effective solution to reduce the heat load on the target plate of tokamak. However, this may result in the change of plasma states at the boundary, thus affecting the plasma confinement. In this paper, edge plasma poloidal rotation and turbulence momentum transport are studied experimentally during the divertor detachment in the L-mode discharge of HL-2A tokamak. The detachment is achieved by injecting a mixture of gas (60% nitrogen+40% deuterium) into the divertor. The gas mixture is injected by pulsed injection, with pulse length being in a range of 5–20 ms. During the divertor detached phase, both the ion saturation current density and the heat flux to the outer target plate decrease considerably. The enhanced radiation is also observed in the divertor and <i>X</i>-point region. It is found that in the process of attachment-to-pre-detachement, the <inline-formula><tex-math id="M3">\begin{document}$ \boldsymbol{E}\times \boldsymbol{B} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20231749_M3.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20231749_M3.png"/></alternatives></inline-formula> poloidal flow velocity in the near scrape-off layer (SOL) changes from ion magnetic drift direction to electron magnetic drift direction. The turbulent driving force of poloidal flow, which is characterized by the negative radial gradient of momentum transfer flux (Reynolds stress), shows the same trend. In the detached phase, both the <inline-formula><tex-math id="M4">\begin{document}$ \boldsymbol{E}\times \boldsymbol{B} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20231749_M4.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20231749_M4.png"/></alternatives></inline-formula>flow and the Reynolds force become very small. Therefore, the dynamics of <inline-formula><tex-math id="M5">\begin{document}$ \boldsymbol{E}\times \boldsymbol{B} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20231749_M5.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20231749_M5.png"/></alternatives></inline-formula> poloidal flow velocity in the SOL is consistent with the evolution of rotation driving effect induced by the turbulent momentum transport. Combined with the <inline-formula><tex-math id="M6">\begin{document}$ \boldsymbol{E}\times \boldsymbol{B} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20231749_M6.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20231749_M6.png"/></alternatives></inline-formula> poloidal flow measured by the probe in the SOL and the beam emission spectrum inside the LCFS, the <inline-formula><tex-math id="M7">\begin{document}$ \boldsymbol{E}\times \boldsymbol{B} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20231749_M7.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20231749_M7.png"/></alternatives></inline-formula> poloidal velocity shearing rate near the LCFS can be inferred. Compared with the attached state, when the divertor is detached, the edge poloidal flow shearing rate decreases significantly, leading to the obviously enhanced turbulence level. Under the influence of both enhanced turbulent transport and radiation, the global confinement degrades moderately. The energy confinement time decreases about 15% and the confinement factor <inline-formula><tex-math id="M8">\begin{document}$ {H}_{89-P} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20231749_M8.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20231749_M8.png"/></alternatives></inline-formula> decreases about 10%. These results indicate that edge turbulent transport and plasma rotation dynamics play a role in the core-edge coupling process in which the divertor detachment affects the global confinement.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3