Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium- frequency magnetohydrodynamic instabilities in tokamak plasma

Author:

Zhu Xiao-Long,Chen Wei,Wang Feng,Wang Zheng-Xiong, ,

Abstract

In tokamak experiments, various magnetohydrodynamic (MHD) instabilities usually co-exist and interact with fast particles. It can cause the fast particles to significantly transport and lose, which results in damaging the first wall and quenching discharge in tokamak. Therefore, the understanding of the physical mechanism of fast particle transport caused by MHD instabilities is crucial and this physical problem needs solving urgently for the steady-state long pulse operation of future reactor-graded devices. According to the phenomenon of synergy between non-resonant internal kink mode and tearing mode, observed experimentally on NSTX, a spherical tokamak device, we utilize the global nonlinear hybrid-kinetic simulation code M3D-K to study and compare the characteristics of loss, transport and redistribution of fast particles in the two cases: 1) the synergy between the non-resonant internal kink mode and tearing mode and 2) only non-resonant internal kink modes. The physical mechanisms of transport, loss, and redistribution of fast particles caused by such synergy are studied, respectively. The results show that the synergy between the non-resonant internal kink mode and the tearing mode can significantly enhance the loss and transport of fast particles. The main reason is that such a synergy can provide a radial channel for fast particles to migrate from the plasma core to the plasma boundary accompanied with the total stochasticity of the magnetic topology. These results can help understand the physical mechanism of the transport and loss of fast particles caused by the synergy of low-frequency MHD instabilities in future fusion reactors, and provide some new ideas for finding strategies to control and mitigate the loss and transport level of fast particles in future fusion reactors.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3