Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma

Author:

ZHU Xiaolong,朱 霄龙,WANG Feng,CHEN Wei,WANG Zhengxiong

Abstract

Abstract Based on the conventional tokamak HL-2A-like parameters and profiles, the linear properties and the nonlinear dynamics of non-resonant kink mode (NRK) and non-resonant fishbone instability (NRFB) in reversed shear tokamak plasmas are investigated by using the global hybrid kinetic-magnetohydrodynamic nonlinear code M3D-K. This work mainly focuses on the effect of passing energetic-ions on the NRK and NRFB instabilities, which is different from the previous works. It is demonstrated that the NRFB can be destabilized by the passing energetic-ions when the energetic-ion beta β h exceeds a critical value. The transition from NRK to NRFB occurs when the energetic-ion beta β h increases to above a critical value. The resonance condition responsible for the excitation of NRFB is interestingly found to be satisfied at ω t + ω pω, where ω t is the toroidal motion frequency, ω p is the poloidal motion frequency and ω is the mode frequency. The nonlinear evolutions of NRFB’s mode structures and Poincaré plots are also analyzed in this work and it is found that the NRFB can induce evident energetic-ion loss/redistribution, which can degrade the performance of the plasmas. These findings are conducive to understanding the mechanisms of NRFB induced energetic-ion loss/redistribution through nonlinear wave-particle interaction.

Funder

Fundament Research Funds for the Central Universities

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3