Simulations of beta-induced Alfvén eigenmode mitigation by off-axis energetic particle distribution

Author:

Duan Sizhe,Zhu Xiang,Cai HuishanORCID

Abstract

Abstract The effect of different off-axis energetic particle (EP) slowing down distribution on beta-induced Alfvén eigenmode (BAE), driven by the on-axis EP distribution, is systematically studied using kinetic-magnetohydrodynamic code M3D-K. The aim is to analyze the optimal parameter region for controlling AEs via varying EP distribution parameters. The simulation results reveal that by modifying the gradients of the EP distribution, the off-axis EP can further destabilize or mitigate the on-axis EP driven BAE, depending on the off-axis EP distribution’s parameters: deposition profile, EP beta, pitch angle, injection velocity and direction. When the off-axis EP is deposited outside the mode center, and its injection velocity is sufficiently large to satisfy the resonance with BAE, the stabilization of BAE is achieved. This stabilizing effect is directly proportional to the off-axis EP beta, while excessive off-axis EP beta can trigger a new EP-driven instability located outside the BAE. Furthermore, to achieve a stronger stabilizing effect, the pitch angle distribution and velocity direction of the off-axis EP should be close to those of the on-axis EP. For instance, compared to the off-axis counter-passing EP, the off-axis co-passing EP can lead to a more effective mitigation of the BAE driven by the on-axis co-passing EP.

Funder

Collaborative Innovation Program of Hefei Scicence Center, CAS

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

The Strategic Priority Research Program of Chinese Academy of Sciences

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3