Abstract
Abstract
Carbide forming interlayers, such as amorphous silicon nitride, are typically used for GaN-on-diamond heterogenous integration. This interlayer has a low thermal conductivity, introducing an additional extrinsic interfacial thermal resistance. It may therefore be advantageous to omit this layer, directly bonding GaN-to-diamond (van der Waals bond). However, weakly bonded interfaces are known to increase the intrinsic thermal boundary resistance. An adapted acoustic mismatch model has been implemented to assess which bonding approach is the most optimal for low thermal resistance GaN-on-diamond. A high thermal boundary resistance of 200 m2 K GW−1 is predicted for weakly bonded GaN-to-diamond interfaces, which is close to the measured value of 220 ± 70 m2 K GW−1, and ∼7× higher than values measured when a 10’s nm-thick SiN interlayer is included. Covalently bonded interfaces are therefore critical for achieving low thermal resistance GaN-on-diamond.
Funder
Engineering and Physical Sciences Research Council
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献