Process optimization of 4H-SiC chemical mechanical polishing based on grey relational analysis

Author:

Ban XinxingORCID,Duan Tianxu,Tian Zhuangzhi,Li Yunhe,Zhu Jianhui,Wang Ningchang,Han Shaoxing,Qiu Hui,Li Zhengxin

Abstract

Abstract Ultra-smooth and low-damage processing of single-crystalline 4 H-SiC has become a research focus as a substrate for third-generation semiconductor wafers. However, the high hardness and strong chemical inertia significantly affect 4 H-SiC chemical-mechanical polishing (CMP) efficiency and accuracy. In this study, polishing process optimization experiments of 4 H-SiC are conducted based on the grey relational analysis method to achieve low surface roughness (Ra) and high material removal rate (MRR). First, MRR and Ra of Si surface (0001) are obtained by orthogonal experiments considering down force, rotation speed, slurry flow rate and abrasive particle size as four key factors. Then the grey relational coefficient and grey relational grade of MRR and Ra are calculated by data processing. The results show that significant factors of the single-objective process are rotation speed, down force, particle size, and flow rate, while the factors of the multi-objective process are down force, flow rate, rotation speed, and particle size in turn. Finally, the MRR of 208.12 nm h−1 and Ra of 0.391 nm are polished using multi-objective optimization process parameters. The polishing efficiency and accuracy were improved, confirming the applicability of grey relational analysis in CMP.

Funder

Foundation of the Education Department of Henan Province

Science and Technology Major Project in Henan Province

Foundation of Henan University of Technology

Key Science and Technology Program of Henan Province

China Postdoctoral Science Foundation

Science and Technology Major Project in Zhengzhou

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3