Characterization of SiO2/4H-SiC Interfaces in 4H-SiC MOSFETs: A Review

Author:

Fiorenza PatrickORCID,Giannazzo FilippoORCID,Roccaforte FabrizioORCID

Abstract

This paper gives an overview on some state-of-the-art characterization methods of SiO2/4H-SiC interfaces in metal oxide semiconductor field effect transistors (MOSFETs). In particular, the work compares the benefits and drawbacks of different techniques to assess the physical parameters describing the electronic properties and the current transport at the SiO2/SiC interfaces (interface states, channel mobility, trapping phenomena, etc.). First, the most common electrical characterization techniques of SiO2/SiC interfaces are presented (e.g., capacitance- and current-voltage techniques, transient capacitance, and current measurements). Then, examples of electrical characterizations at the nanoscale (by scanning probe microscopy techniques) are given, to get insights on the homogeneity of the SiO2/SiC interface and the local interfacial doping effects occurring upon annealing. The trapping effects occurring in SiO2/4H-SiC MOS systems are elucidated using advanced capacitance and current measurements as a function of time. In particular, these measurements give information on the density (~1011 cm−2) of near interface oxide traps (NIOTs) present inside the SiO2 layer and their position with respect to the interface with SiC (at about 1–2 nm). Finally, it will be shown that a comparison of the electrical data with advanced structural and chemical characterization methods makes it possible to ascribe the NIOTs to the presence of a sub-stoichiometric SiOx layer at the interface.

Funder

Electronic Components and Systems for European Leadership

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3