High-performance inverters based on ambipolar organic-inorganic heterojunction thin-film transistors*

Author:

Sun Sheng,Li Yuzhi,Zhang Shengdong

Abstract

This work reports on the integration of organic and inorganic semiconductors as heterojunction active layers for high-performance ambipolar transistors and complementary metal-oxide-semiconductor (CMOS)-like inverters. Pentacene is employed as a p-type organic semiconductor for its stable electrical performance, while the solution-processed scandium (Sc) substituted indium oxide (ScInO) is employed as an n-type inorganic semiconductor. It is observed that by regulating the doping concentration of Sc, the electrical performance of the n-type semiconductor could be well controlled to obtain a balance with the electrical performance of the p-type semiconductor, which is vital for achieving high-performance inverters. When the doping concentration of Sc is 10 at.%, the CMOS-like logic inverters exhibit a voltage gain larger than 80 and a wide noise margin (53% of the theoretical value). The inverters also respond well to the input signal with frequency up to 500 Hz.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancement-Mode Ambipolar Thin-Film Transistors and CMOS Logic Circuits using Bilayer Ga2O3/NiO Semiconductors;ACS Applied Materials & Interfaces;2024-01-26

2. A Comprehensive Compilation of the characteristic aspects of Organic Thin Film Transistors;2023 First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI);2023-10-19

3. Low-voltage, solution-processed, two-terminal organic bistable memory device;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2022-09-15

4. Recent Progress in Ambipolar Organic Field-Effect Transistors Based on Organic Semiconductor Bilayer;Chinese Journal of Organic Chemistry;2022

5. Recent progress of oxide-TFT-based inverter technology;Journal of Information Display;2021-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3