Author:
Xu Jie,He Nai-Long,Liang Hai-Lian,Zhang Sen,Jiang Yu-De,Gu Xiao-Feng
Abstract
A novel terminal-optimized triple RESURF LDMOS (TOTR-LDMOS) is proposed and verified in a 0.25-μm bipolar-CMOS-DMOS (BCD) process. By introducing a low concentration region to the terminal region, the surface electric field of the TOTR-LDMOS decreases, helping to improve the breakdown voltage (BV) and electrostatic discharge (ESD) robustness. Both traditional LDMOS and TOTR-LDMOS are fabricated and investigated by transmission line pulse (TLP) tests, direct current (DC) tests, and TCAD simulations. The results show that comparing with the traditional LDMOS, the BV of the TOTR-LDMOS increases from 755 V to 817 V without affecting the specific on-resistance (R
on,sp) of 6.99 Ω⋅mm2. Meanwhile, the ESD robustness of the TOTR-LDMOS increases by 147%. The TOTR-LDMOS exhibits an excellent performance among the present 700-V LDMOS devices.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献