Author:
Mi Minhan,Zhang Meng,Wu Sheng,Yang Ling,Hou Bin,Zhou Yuwei,Guo Lixin,Ma Xiaohua,Hao Yue
Abstract
A high performance InAlN/GaN high electron mobility transistor (HEMT) at low voltage operation (6–10 V drain voltage) has been fabricated. An 8 nm InAlN barrier layer is adopted to generate large 2DEG density thus to reduce sheet resistance. Highly scaled lateral dimension (1.2 μm source–drain spacing) is to reduce access resistance. Both low sheet resistance of the InAlN/GaN structure and scaled lateral dimension contribute to an high extrinsic transconductance of 550 mS/mm and a large drain current of 2.3 A/mm with low on-resistance (R
on) of 0.9 Ω⋅mm. Small signal measurement shows an f
T/f
max of 131 GHz/196 GHz. Large signal measurement shows that the InAlN/GaN HEMT can yield 64.7%–52.7% (V
ds = 6–10 V) power added efficiency (PAE) associated with 1.6–2.4 W/mm output power density at 8 GHz. These results demonstrate that GaN-based HEMTs not only have advantages in the existing high voltage power and high frequency rf field, but also are attractive for low voltage mobile compatible rf applications.
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献