Large area few-layer TMD film growths and their applications

Author:

Mandyam Srinivas VORCID,Kim Hyong M,Drndić Marija

Abstract

Abstract Research on 2D materials is one of the core themes of modern condensed matter physics. Prompted by the experimental isolation of graphene, much attention has been given to the unique optical, electronic, and structural properties of these materials. In the past few years, semiconducting transition metal dichalcogenides (TMDs) have attracted increasing interest due to properties such as direct band gaps and intrinsically broken inversion symmetry. Practical utilization of these properties demands large-area synthesis. While films of graphene have been by now synthesized on the order of square meters, analogous achievements are difficult for TMDs given the complexity of their growth kinetics. This article provides an overview of methods used to synthesize films of mono- and few-layer TMDs, comparing spatial and time scales for the different growth strategies. A special emphasis is placed on the unique applications enabled by such large-scale realization, in fields such as electronics and optics.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3