Comprehensive understanding of the ignition process of a pulsed capacitively coupled radio frequency discharge: the effect of power-off duration

Author:

Wang Xiang-YuORCID,Liu Jia-Rui,Liu Yong-XinORCID,Donkó ZoltanORCID,Zhang Quan-Zhi,Zhao KaiORCID,Schulze JulianORCID,Wang You-Nian

Abstract

Abstract The effect of the pulse-off duration on the time evolution of the plasma and electrical parameters during the ignition phase in a pulsed capacitively coupled radio frequency argon discharge operated at 450 mTorr and 12.5 MHz is investigated synergistically by multifold experimental diagnostics, particle-in-cell/Monte Carlo collision simulations and an analytical model. In the experiment, the electron density is measured time-resolved by a hairpin probe, the spatio-temporal distribution of the electron impact excitation dynamics is studied by phase resolved optical emission spectroscopy, and the amplitudes and the relative phase, φ vi, of the discharge voltage and current are determined based on the waveforms measured by a voltage and a current probe. The experimental results show that the plasma and electrical parameters during the ignition process depend strongly on the duration of the afterglow period, T off, primarily because of the dependence of the remaining charge density on this parameter. Computed values of φ vi show a similar time-dependence compared to the experiment, if the simulations are initialized with specific initial charged particle densities, n ini. This allows us to further understand the time evolution of φ vi for different values of T off based on the simulation results together with an analytical model. In particular, the optical emission intensity is found to change with time in the same fashion as the power deposition into the system at T off ⩾ 100 μs, suggesting that the power is primarily absorbed by the electrons, which dissipate their energy via inelastic collisions. The system goes through different mode transitions of electron power absorption during the ignition phase depending on T off. Specifically, for short T off (high n ini), the α mode dominates during the entire ignition process, as the electric field is largely shielded by the abundant charge located in the interelectrode space. For intermediate values of T off (moderate n ini), another excitation pattern caused by an enhanced drift electric field at the center of the gap is observed, since a large fraction of the externally applied potential can penetrate into the central region in the absence of high charged particle densities. For longer T off (very low n ini), the ignition of the pulsed plasma behaves like a gas breakdown.

Funder

National Natural Science Foundation of China

RUB-DUT collaboration/exchange network

Hungarian Office for Research, Development and Innovation

the DFG in the frame of the project, ‘Electron heating in capacitive RF plasmas based on moments of the Boltzmann equation: from fundamental understanding to knowledge based process control’

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3