Effects of ‘step-like’ amplitude-modulation on a pulsed capacitively coupled RF discharge: an experimental investigation

Author:

Fu Yan-Yan,Wang Xiao-KunORCID,Liu Yong-XinORCID,Schulze JulianORCID,Donkó ZoltánORCID,Wang You-NianORCID

Abstract

Abstract We present measurements of the time evolution of plasma and electrical parameters in a pulsed capacitively coupled argon discharge operated at a radio frequency of 12.5 MHz, whose amplitude is ‘step-up’ and ‘step-down’ modulated. The ‘step-up (-down)’ amplitude-modulated waveform consists of three segments, i.e., a low (high)-voltage, a high (low)-voltage, and a zero-voltage stage. Here, we focus on the effect of the ratio (ζ = V L/V H ⩽ 1) of the low-(V L) to high-voltage (V H) amplitude (measured at the end of the respective segment) on the time evolution of discharge parameters. We monitor the behavior of the discharge by measuring (i) the optical emission intensity (OEI) of a selected Ar-I spectral line, (ii) the electron density at the center of the plasma (using a hairpin probe) as well as (iii) the electrical characteristics (by voltage and current probes). It is found that at relatively large ζ (i.e., at low disparity between the two voltage amplitudes), for both the ‘step-up’ and ‘step-down’ cases, these parameters evolve relatively smoothly with time upon changing the voltage amplitude, and the ignition process strongly depends on the duration of the zero-voltage period. At low ζ (i.e., at high disparity between the voltage amplitudes), an abnormal evolution of the parameters can be observed during the low-voltage period for both cases. Specifically, the voltage amplitude and the modulus of the system impedance increase to a higher value, while the relative phase, φ vi, between the voltage and the current approaches 90°, resulting in a reduction of the power deposition and the OEI. The enhanced voltage amplitude decreases to a steady-state value, accompanied by a decline of φ vi, and an abnormal increase of the current amplitude and the electron density after some time, of which the duration increases with the decrease of ζ. The ζ-dependent evolution of the electron density during the low-voltage period was found to significantly affect the subsequent ignition process and electron power absorption mode at the beginning of the high-voltage period.

Funder

National Natural Science Foundation of China

Deutsche Forschungsgemeinschaft

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3