Experimental investigation of an electronegative cylindrical capacitively coupled geometrically asymmetric plasma discharge with an axisymmetric magnetic field

Author:

Dahiya Swati12ORCID,Sharma Narayan3ORCID,Geete Shivani3ORCID,Sharma Sarveshwar12ORCID,Sirse Nishant3ORCID,Karkari Shantanu12ORCID

Affiliation:

1. Institute for Plasma Research, Bhat 1 , Gandhinagar, Gujarat 382428, India

2. Homi Bhabha National Institute, Training School Complex 2 , Anushaktinagar, Mumbai 400094, India

3. Institute of Science and Research and Centre for Scientific and Applied Research, IPS Academy 3 , Indore 452012, India

Abstract

In this study, we have investigated the production of negative ions by mixing electronegative oxygen gas with electropositive argon gas in a geometrically asymmetric cylindrical capacitively coupled radio frequency plasma discharge. The plasma parameters such as density (electron, positive, and negative ion), negative ion fraction, and electron temperature are investigated for fixed gas pressure and increasing axial magnetic field strength. The axisymmetric magnetic field creates an E × B drift in the azimuthal direction, leading to the confinement of high-energy electrons at the radial edge of the chamber, resulting in decreased species density and negative ion fraction in the plasma bulk. However, the electron temperature increases with the magnetic field. It is concluded that low magnetic fields are better suited for negative ion production in such devices. Furthermore, in addition to the percentage ratio of the two gases, the applied axial magnetic field also plays a vital role in controlling negative ion fraction.

Funder

Science and Engineering Research Board

Department of Atomic Energy, Government of India

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3