Abstract
Abstract
We present a novel technique to perform contactless and mask-free patterned plasma enhanced chemical vapour deposition and etching. When a powered electrode with narrow slits is placed very close to the substrate, plasma is selectively ignited within the slits due to the hollow cathode effect, and so deposition or etching occurs only within an area smaller than the size of the slit. This technique is demonstrated through the deposition of hydrogenated amorphous silicon using a gas mixture of hydrogen, argon and silane. Slits as small as 1 mm generate a plasma, and for this width, the lines deposited are about 750 μm wide, homogenous over their length (60 mm), and are deposited at a rate of 50 nm min−1. The phenomenon is studied using 2D Particle In Cell (PIC) modelling with a simplified argon chemistry. The electron localization observed in the PIC modelling provides an explanation of why the deposition is narrower than the slit.
Funder
Agence Nationale de la Recherche
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献