Nonlinear harmonic excitations in collisional, asymmetrically-driven capacitive discharges

Author:

Liu Jian-KaiORCID,Kawamura Emi,Lieberman Michael AORCID,Lichtenberg Allan J,Wang You-NianORCID

Abstract

Abstract The standing wave effect, which may lead to center-high density profiles in high frequency capacitive discharges, can be enhanced by nonlinearly excited harmonics. In this work, a nonlinear transmission line model, which solves for the electromagnetic fields in the time domain, is coupled to a two-dimensional bulk plasma fluid model to study nonlinear effects in asymmetric cylindrical capacitive argon discharges. An analytical collisional or collisionless (ion) sheath model is used to determine the stochastic and ohmic sheath heating and the nonlinear dependence of sheath voltage on sheath charge. We first examine a base case of a 20 mTorr argon discharge driven with an electron power P e = 40 W at a frequency f = 60 MHz, using collisionless and collisional sheath models. For the collisionless sheath model, the nonlinearly excited harmonics near the series and spatial resonance frequencies significantly enhance the on-axis power deposition and lead to a sharp peak of electron density at the discharge center. The collisional sheath model gives a smaller sheath width, leading to lower series and spatial resonance frequencies and a smaller source voltage for the fixed electron power. As a result, lower harmonics with broader spatial profiles and decreased magnitude are excited, reducing the center-high plasma nonuniformity. Then, we examine the discharge in a pressure range of 20–100 mTorr at fixed P e = 40 W and f = 60 MHz, using the collisional sheath model. As pressure increases, the harmonics gradually damp out, and the enhancement of on-axis power deposition becomes less significant. At the same time, more power is localized near the powered electrode edge due to decreased skin depth and smaller energy diffusion. As a result, the density peak shifts from the radial center to the powered electrode edge.

Funder

a gift from Applied Materials Corporation, AKT Display Group

China Scholarship Council

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3