Structure and electron affinity of the 4H–SiC (0001) surfaces: a methodological approach for polar systems

Author:

Beattie J M AORCID,Goss J P,Rayson M J,Briddon P R

Abstract

Abstract The ability to accurately and consistently determine the surface electronic properties of polar materials is of great importance for device applications. Polar surface modelling is fundamentally limited by the spontaneous polarisation of these materials in a periodic boundary condition scheme. Surface data are sensitive to supercell parameters, including slab and vacuum thicknesses, as well as the non-equivalence of surface adsorbates on opposite surfaces. Using 4H–SiC as a specific case, this study explores calculation of electron affinities (EAs) of (000 1 ̄ ) and (0001) surfaces varying chemical termination as a function of computational parameters. We report the impact in terms of band-gap, electric fields across the vacuum and slab for single and double cell slab models, where the latter is constructed with inversional symmetry to eliminate the electric field in the vacuum regions. We find that single cells are sensitive to both slab and vacuum thickness. The band-gap narrows with slab thickness, ultimately vanishing and inducing charge transfer between opposite surfaces. This has a consequence for predicted EAs. Adsorbate species are found to play a crucial role in the rate of narrowing. Back to back cells with inversional symmetry have larger electric fields present across the slab than the single slab cases, resulting in a greater band-gap narrowing effect, but the vacuum thickness dependence is completely removed. We discuss the relative merits of the two approaches.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3