Determination of Work Function for p- and n-Type 4H-SiC Single Crystals via Scanning Kelvin Probe Force Microscopy

Author:

Li 李 Hui 辉,Wang 王 Guobin 国宾,Yang 杨 Jingyu 靖宇,Zhang 张 Zesheng 泽盛,Deng 邓 Jun 俊,Du 杜 Shixuan 世萱

Abstract

Silicon carbide (SiC) is a promising platform for fabricating high-voltage, high-frequency and high-temperature electronic devices such as metal oxide semiconductor field effect transistors in which many junctions or interfaces are involved. The work function (WF) plays an essential role in these devices. However, studies of the effect of conductive type and polar surfaces on the WF of SiC are limited. Here, we report the measurement of WFs of Si- and C-terminated polar surfaces for both p-type and n-type conductive 4H-SiC single crystals by scanning Kelvin probe microscopy (SKPFM). The results show that p-type SiC exhibits a higher WF than n-type SiC. The WF of a C-terminated polar surface is higher than that of a Si-terminated polar surface, which is further confirmed by first-principles calculations. By revealing this long-standing knowledge gap, our work facilitates the fabrication and development of SiC-based electronic devices, which have tremendous potential applications in electric vehicles, photovoltaics, and so on. This work also shows that SKPFM is a good method for identifying polar surfaces of SiC and other polar materials nondestructively, quickly and conveniently.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3