Author:
Kumar Nitish,Barry Matthew C,Kumar Satish
Abstract
Abstract
Phonon transport in β-Ga2O3 thin films and metal-oxide field effect transistors (MESFETs) are investigated using non-gray Boltzmann transport equations (BTEs) to decipher the effect of ballistic-diffusive phonon transport. The effects of domain size, and energy dissipation to various phonon modes and subsequent phonon–phonon energy exchange on the thermal transport and temperature distribution is investigated using non-gray BTE. Our analysis deciphered that domain size plays a major role in thermal transport in β-Ga2O3 but energy dissipation to various phonon modes and subsequent phonon–phonon energy exchange does not affect the temperature field significantly. Phonon transport in β-Ga2O3 MESFETs on diamond substrate is investigated using coupled non-gray BTE and Fourier model. It is established that the ballistic effects need to be considered for devices with β-Ga2O3 layer thickness less than 1 μm. A non-gray phonon BTE model should be used near hotspot in the thin β-Ga2O3 layer as the Fourier model may not give accurate temperature distribution. The results from this work will help in understanding the mechanism of phonon transport in the β-Ga2O3 thin films and energy efficient design of its FETs.
Subject
Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献