Study on Diesel Engine Characteristics under Large Transient EGR

Author:

Cui Huasheng,Zhao Zhenfeng,Geng Zhao,Liu Yuhang

Abstract

Abstract Modern diesel engines tend to employ up to 50-70% exhaust gas recirculation (EGR) together with high intake pressure and injection strategies to enable low temperature combustion (LTC) cycles for reducing NOx and soot emissions simultaneously. Obviously, the combustion conditions and exhaust emissions are sensitive at such high EGR rate. And any slight fluctuation in the EGR quantity will bring unintended deviations from the desired engine performance, thus LTC mode is only limited at partial engine operation points. So the engine has to switch combustion mode frequently between compression ignition (CI) and LTC region within a few engine cycles in real application, which may result in combustion cyclic variations and even misfire, especially during transient operation. In order to investigate effect of heavy EGR transient process on engine combustion cycles, the experimental work was carried out on a four-cylinder VM common-rail turbocharged diesel engine. The results show that the oxygen concentration in the intake charge almost maintains at steady level at EGR steady conditions, while the exhaust oxygen concentration is affected by exhaust values opening/exhaust values closing (EVO/EVC), and result in intra-cycle fluctuation, which will approximately bring 2% calculation error bandwidth for EGR ratio. From 37% to 55% EGR ratio, the EGR gas is mainly driven by the pressure ratio of intake and exhaust duct, and it will experience a long accumulating process to reach a new equilibrium. And the inordinate delayed injection timing will promote in-cylinder cycle-to-cycle variation and even misfire, especially during transition from CI to LTC region.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3