Practical health indicator construction methodology for bearing ensemble remaining useful life prediction with ISOMAP-DE and ELM-WPHM

Author:

Gu Yingkui,Bi Qingpeng,Qiu GuangqiORCID

Abstract

Abstract To improve the accuracy of our previous bearing ensemble remaining useful life (RUL) prediction model using the genetic algorithm (GA), support vector regression, and the Weibull proportional hazard model (WPHM) (see Qiu et al (2020 Measurement 150 107097)), we proposed a more practical health indicator (HI) construction methodology for bearing ensemble RUL prediction. A weighted coefficient determination method for four prognostic metrics-monotonicity, robustness, trendability, and consistency-was proposed to select sensitive health features accurately using the analytic hierarchy process. The selected sensitive health features were fused through isometric feature mapping (ISOMAP), and differential evolution (DE) was employed to replace GA for computing the optimal weight coefficients of each input fused feature. One-dimensional HI was constructed by multiplying each input fused feature with the corresponding optimal weight coefficient, and RUL prediction was implemented through an extreme learning machine (ELM) and WPHM. The accuracy and effectiveness of the proposed method were validated by a bearing experiment. The results show that HI construction with ISOMAP-DE has achieved the best performance, and the proposed ELM-WPHM model is compared with BP-WPHM, SVM-WPHM, LSTM-WPHM, and DLSTM-WPHM in terms of RMSE criteria. The minimum error and training time appear in ELM-WPHM, indicating the superiority of the proposed bearing ensemble RUL prediction model.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province in China

Key Science and Technology Project of Jiangxi Education Department in China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3