Remaining life prognostics of rolling bearing based on relative features and multivariable support vector machine

Author:

Chen Xuefeng1,Shen Zhongjie12,He Zhengjia1,Sun Chuang1,Liu Zhiwen1

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, PR China

2. Xi'an Research Institute of China Coal Technology & Engineering Group Corp., Xi'an, PR China

Abstract

Life prognostics are an important way to reduce production loss, save maintenance cost and avoid fatal machine breakdowns. Predicting the remaining life of rolling bearing with small samples is a challenge due to lack of enough condition monitoring data. This study proposes a novel prognostics model based on relative features and multivariable support vector machine to meet the challenge. Support vector machine is an effective prediction method for the small samples. However, it only focuses on the univariate time series prognosis and fails to predict the remaining life directly. So multivariable support vector machine is constructed for the life prognostics with many relative features, which are closely linked to the remaining life. Unlike the univariate support vector machine, multivariable support vector machine considers the influences among various variables and excavates the potential information of small samples as much as possible. Besides, relative root mean square with ineffectiveness of the individual difference is used to assess the bearing performance degradation and divided the stages of the whole bearing life. The simulation and run-to-failure experiments are carried out to validate the novel prognostics model. And the results demonstrate that multivariable support vector machine utilizes many kinds of useful information for the precise prediction with practical values.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3