New Health Indicator Construction and Fault Detection Network for Rolling Bearings via Convolutional Auto-Encoder and Contrast Learning

Author:

Wu Dongdong1,Chen Da1,Yu Gang1ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China

Abstract

As one of the most important components in rotating machinery, if bearings fail, serious disasters may occur. Therefore, the remaining useful life (RUL) prediction of bearings is of great significance. Health indicator (HI) construction and early fault detection play a crucial role in data-driven RUL prediction. Unfortunately, most existing HI construction methods require prior knowledge and preset trends, making it difficult to reflect the actual degradation trend of bearings. And the existing early fault detection methods rely on massive historical data, yet manual annotation is time-consuming and laborious. To address the above issues, a novel deep convolutional auto-encoder (CAE) based on envelope spectral feature extraction is developed in this work. A sliding value window is defined in the envelope spectrum to obtain initial health indicators, which are used as preliminary labels for model training. Subsequently, CAE is trained by minimizing the composite loss function. The proposed construction method can reflect the actual degradation trend of bearings. Afterwards, the autoencoder is pre-trained through contrast learning (CL) to improve its discriminative ability. The model that has undergone offline pre-training is more sensitive to early faults. Finally, the HI construction method is combined with the early fault detection method to obtain a comprehensive network for online health assessment and fault detection, thus laying a solid foundation for subsequent RUL prediction. The superiority of the proposed method has been verified through experiments.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3