A bearing RUL prediction approach of vibration fault signal denoise modeling with Gate-CNN and Conv-transformer encoder

Author:

Huang Peng,Wang Yuanjin,Gu Yingkui,Qiu GuangqiORCID

Abstract

Abstract The operating conditions of rolling bearings are complex and variable, and their vibration monitoring signals are filled with strong noise interference, resulting in a low accuracy in remaining useful life (RUL) prediction. For this issue, this paper proposes a denoising method with vibration fault signals modeling, and a novel RUL prediction method with Gate-convolutional neural networks (CNN) and Conv-Transformer encoder. Firstly, the theoretical fault signal is obtained through the vibration fault signal model, and the quality of the extracted features is improved by the wavelet threshold denoising algorithm in the process of feature extraction and selection. Moreover, the CNN is combined with the gating mechanism to construct a feature extractor with the feature evaluation function, and the convolution layers are introduced into the transformer to expand the encoder’s ability to explore local information in temporal data. By using fixed-time step temporal features as the input to the prediction module and minimizing the Huber function as the optimization objective, the relationship between temporal features and RUL is obtained. The comparison with the existing state-of-the-art RUL methods illustrates that the combination of gate control and convolutional structure proposed in this paper can not only reduce the prediction error of the model but also improve its generalization ability and robustness.

Funder

Natural Science Foundation of Jiangxi Province

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3