Enhanced crystalline quality of non-polar a-plane AlGaN epitaxial film grown with Al-composition-graded AlGaN intermediate layer

Author:

Nasir Abbas,Zhang XiongORCID,Lu Liang,Zhang Jin,Lyu Jiadong,Cui Yiping

Abstract

Abstract The non-polar a-AlGaN epitaxial film was successfully grown on the semi-polar r-sapphire substrate by metal-organic chemical vapor deposition technique. An Al-composition-graded AlxGa1−xN (x = 0.0 to 1.0) intermediate layer with varying film thickness from 260 to 695 nm was deposited between the high-temperature AlN layer and the non-polar a-AlGaN epitaxial film to enhance the morphological and crystalline quality. The non-polar a-AlGaN epitaxial films were investigated by using atomic force microscopy (AFM), high-resolution x-ray diffraction, photoluminescence (PL) spectroscopy and the Hall effect measurement techniques. The characterisation results indicate substantial improvements in surface morphology and crystalline quality for the non-polar a- AlGaN epitaxial film grown by adding an Al-composition-graded AlGaN intermediate layer. The surface roughness measured from AFM and the defect-related emission (yellow band) relative to the near-band-edge emission from PL spectra were decreased significantly by optimizing the layer thickness of the Al-composition-graded AlGaN layer. A relatively low background carrier concentration down to −4.4 ×  10 17 cm−3 was achieved from Hall effect measurement for the non-polar a-AlGaN epitaxial film.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Jiangsu Province

Postgraduate Research & Practice Innovation Program of Jiangsu Province

the Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3