Motion planning for humanoid robot dynamically stepping over consecutive large obstacles
Author:
Guo Fayong,Mei Tao,Luo Minzhou,Ceccarelli Marco,Zhao Ziyi,Li Tao,Zhao Jianghai
Abstract
Purpose
– Humanoid robots should have the ability of walking in complex environment and overcoming large obstacles in rescue mission. Previous research mainly discusses the problem of humanoid robots stepping over or on/off one obstacle statically or dynamically. As an extreme case, this paper aims to demonstrate how the robots can step over two large obstacles continuously.
Design/methodology/approach
– The robot model uses linear inverted pendulum (LIP) model. The motion planning procedure includes feasibility analysis with constraints, footprints planning, legs trajectory planning with collision-free constraint, foot trajectory adapter and upper body motion planning.
Findings
– The motion planning with the motion constraints is a key problem, which can be considered as global optimization issue with collision-free constraint, kinematic limits and balance constraint. With the given obstacles, the robot first needs to determine whether it can achieve stepping over, if feasible, and then the robot gets the motion trajectory for the legs, waist and upper body using consecutive obstacles stepping over planning algorithm which is presented in this paper.
Originality/value
– The consecutive stepping over problem is proposed in this paper. First, the paper defines two consecutive stepping over conditions, sparse stepping over (SSO) and tight stepping over (TSO). Then, a novel feasibility analysis method with condition (SSO/TSO) decision criterion is proposed for consecutive obstacles stepping over. The feasibility analysis method’s output is walking parameters with obstacles’ information. Furthermore, a modified legs trajectory planning method with center of mass trajectory compensation using upper body motion is proposed. Finally, simulations and experiments for SSO and TSO are carried out by using the XT-I humanoid robot platform with the aim to verify the validity and feasibility of the novel methods proposed in this paper.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Reference25 articles.
1. Arbulu, M.
,
Kheddar, A.
and
Yoshida, E.
(2010), “An approach of generic solution for Humanoid stepping over motion”, IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, pp. 474-479. 2. Ayaz, Y.
,
Konno, A.
,
Munawar, K.
,
Tsujita, K.
,
Komizunai, S.
and
Uchiyama, M.
(2011), “A human-like approach towards humanoid robot footstep planning”,
International Journal of Advanced Robotic System
, Vol. 8 No. 4, pp. 98-109. 3. Chestnutt, J.
,
Kuffner, J.
,
Nishiwaki, K.
and
Kagami, S.
(2003), “Planning biped navigation strategies in complex environments”, International Conference on Humanoid Robots, Munich. 4. Chestnutt, J.
,
Takaoka, Y.
,
Suga, K.
,
Nishiwaki, K.
,
Kuffner, J.
and
Kagami, S.
(2009), “Biped navigation in rough environments using on-board sensing”, IEEE International Conference on Intelligent Robots and Systems, St. Louis, MO, pp. 3543-3548. 5. Guan, Y.
,
Sian, N.E.
,
Yokoi, K.
and
Tanie, K.
(2006), “Stepping over obstacles with humanoid robots”,
IEEE Transactions on Robotics
, Vol. 22 No. 5, pp. 958-973.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|