Generating real-time trajectories for a planar biped robot crossing a wide ditch with landing uncertainties

Author:

Janardhan V.,Prasanth Kumar R.

Abstract

SUMMARYDitch crossing is one of the essential capabilities required for a biped robot in disaster management and search and rescue operations. Present work focuses on crossing a wide ditch with landing uncertainties by an under-actuated planar biped robot with five degrees of freedom. We consider a ditch as wide for a robot when the ankle to ankle stretch required to cross it is at least equal to the leg length of the robot. Since locomotion in uncertain environments requires real-time planning, in this paper, we present a new approach for generating real-time joint trajectories using control constraints not explicitly dependent on time, considering impact, dynamic balance, and friction. As part of the approach, we introduce a novel concept called the point of feasibility for bringing the biped robot to complete rest at the end of ditch crossing. We present a study on the influence of initial posture on landing impact and net energy consumption. Through simulations, we found the best initial postures to efficiently cross a wide ditch of width 1.05 m, with less impact and without singularities. Finally, we demonstrate the advantage of the proposed approach to cross a wide ditch when the surface friction is not same on both sides of the ditch.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of dynamically balanced gait for the biped robot while crossing the obstacle;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-04-30

2. Dynamic Optimization of Mechanism Parameters of Bipedal Robot Considering Full-Range Walking Energy Efficiency;Applied Sciences;2023-09-28

3. Walking of Prismatic Knee Biped Robot Using Reinforcement Learning;2023 IEEE 4th Annual Flagship India Council International Subsections Conference (INDISCON);2023-08-05

4. Inverse Jacobian Programming Approach to Robotic Path Planning of Various Path Profiles;International Journal on Interactive Design and Manufacturing (IJIDeM);2023-01-11

5. A Short Review on Biped Robots Motion Planning and Trajectory Design;Lecture Notes in Mechanical Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3