Design of dynamically balanced gait for the biped robot while crossing the obstacle

Author:

Khan Moh Shahid1ORCID,Mandava Ravi Kumar2

Affiliation:

1. Department of Mechanical Engineering, MANIT Bhopal, Bhopal, Madhya Pradesh, India

2. Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing Kurnool (IIITDM-K), Andhra Pradesh, India

Abstract

The primary objective of this research work is to generate a dynamically balanced gait for the 16-DOF biped robot while crossing an obstacle using the concept of the zero moment point (ZMP). Also, the authors discussed both the theoretical justification and its practical feasibility on real biped robot. Initially, the position and orientation of the biped robot were obtained with the help of forward kinematics while crossing the obstacle. Later on, various joint angles of the biped robot were calculated using the inverse kinematics approach. Further, the Lagrange-Euler formulation approach was employed for evaluating the dynamics of the biped robot. To generate the smooth gait of the biped robot, a cubic polynomial equation has been assigned for foot and wrist trajectories in the sagittal plane and hip trajectories in the horizontal plane. This integration allows the robot to cross the obstacles while maintaining dynamic balance, marking a significant advancement while crossing the obstacle with a height and width equal to 50 mm, which is 16.10% of the length of the robot’s leg. While crossing the obstacle, the gait of the biped robot has been considered in three stages, such as landing the foot on the obstacle, landing the foot on the ground away from the obstacle by one leg and crossing over the obstacle by another leg. A simulation study has been conducted on MATLAB to verify the dynamically balanced gait while crossing the obstacle. Finally, the generated gait angles are fed into the real 16-DOF biped robot developed by the Robotics Lab at MANIT Bhopal. It has been observed that the generated gait at three stages is more dynamically balanced while crossing the obstacle.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3