Author:
Periyanan P.R.,Natarajan U.
Abstract
Purpose
– Micro-EDM is an important process in the field of micro-machining. Especially, the μEDM is one of the technologies widely used for manufacture of micro-parts, micro-tools and micro-components, etc. The accuracy and repeatability of the μEDM process is still highly dependent on the μWEDG process. The electrode generation and regeneration is considered a key enabling technology for improving the performance of the μEDM process. Many engineers considered the Taguchi technique as engineering judgment during multiple response optimizations. This paper aims to focus on the use of micro-WEDG process to generate a micro-tool (electrode) with minimum surface roughness and higher metal removal rate (MRR).
Design/methodology/approach
– In this research work, the Taguchi quality loss function analysis is used to examine and explain the influences of three process parameters (feed rate, capacitance and voltage) on the output responses such as MRR and surface roughness. Further, the optimized machining parameters were determined considering the multiple response objective using Taguchi multi-response signal-to-noise ratio.
Findings
– Based on the experimental result, it was concluded that the Taguchi technique is suitable for the optimization of multi-response problem.
Originality/value
– This paper presents an alternative approach using Taguchi's quality loss function. In most of the modern technological situations, more than one response variable is pertinent to the success of an industrial process. In this research work, the influence of feed rate, capacitance and voltage on the MRR and surface roughness (multiple responses) is investigated.
Subject
Strategy and Management,General Business, Management and Accounting
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献