Author:
Moslemi Amir,Shafiee Mahmood
Abstract
PurposeIn a multistage process, the final quality in the last stage not only depends on the quality of the task performed in that stage but is also dependent on the quality of the products and services in intermediate stages as well as the design parameters in each stage. One of the most efficient statistical approaches used to model the multistage problems is the response surface method (RSM). However, it is necessary to optimize each response in all stages so to achieve the best solution for the whole problem. Robust optimization can produce very accurate solutions in this case.Design/methodology/approachIn order to model a multistage problem, the RSM is often used by the researchers. A classical approach to estimate response surfaces is the ordinary least squares (OLS) method. However, this method is very sensitive to outliers. To overcome this drawback, some robust estimation methods have been presented in the literature. In optimization phase, the global criterion (GC) method is used to optimize the response surfaces estimated by the robust approach in a multistage problem.FindingsThe results of a numerical study show that our proposed robust optimization approach, considering both the sum of square error (SSE) index in model estimation and also GC index in optimization phase, will perform better than the classical full information maximum likelihood (FIML) estimation method.Originality/valueTo the best of the authors’ knowledge, there are few papers focusing on quality-oriented designs in the multistage problem by means of RSM. Development of robust approaches for the response surface estimation and also optimization of the estimated response surfaces are the main novelties in this study. The proposed approach will produce more robust and accurate solutions for multistage problems rather than classical approaches.
Subject
Strategy and Management,General Business, Management and Accounting
Reference42 articles.
1. An overview of optimization formulations for multiresponse surface problems;Quality and Reliability Engineering International,2013
2. A mathematical model based on principal component analysis for optimization of correlated multiresponse surfaces;Journal of Quality,2012
3. The analysis of residuals variation and outliers to obtain robust response surface;Journal of Industrial Engineering International,2013
4. Simultaneous robust estimation of multi-response surfaces in the presence of outliers;Journal of Industrial Engineering International,2013
5. A multistage and multiple response optimization approach for serial manufacturing system;European Journal of Operational Research,2016
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献