Manual spray painting process optimization using Taguchi robust design

Author:

Almansoori Noura,Aldulaijan Samah,Althani Sara,Hassan Noha M.,Ndiaye Malick,Awad Mahmoud

Abstract

PurposeResearchers heavily investigated the use of industrial robots to enhance the quality of spray-painted surfaces. Despite its advantages, automating process is not always economically feasible. The manual process, on the other hand, is cheaper, but its quality is prone to the mental and physical conditions of the worker making it difficult to operate consistently. This research proposes a mathematical cost model that integrates human factors in determining optimal process settings.Design/methodology/approachTaguchi's robust design is used to investigate the effect of fatigue, stability of worker's hand and speed on paint consumption, surface quality, and processing time. A crossed array experimental design is deployed. Regression analysis is then used to model response variables and formulate cost model, followed by a multi-response optimization.FindingsResults reveal that noise factors have a significant influence on painting quality, time, and cost of the painted surface. As a result, a noise management strategy should be implemented to reduce their impact and obtain better quality and productivity results. The cost model can be used to determine optimal setting for different applications by product and by industry.Originality/valueHardly any research considered the influence of human factors. Most focused on robot trajectory and its effect on paint uniformity. In proposed research, both cost and quality are integrated into a single objective. Quality is measured in terms of uniformity, smoothness, and surface defects. The interaction between trajectory and flow rate is investigated here for the first time. A unique approach integrating quality management, statistical analysis, and optimization is used.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting

Reference36 articles.

1. Novel integrated offline trajectory generation approach for robot assisted spray painting operation;Journal of Manufacturing Systems,2015

2. Process simulation and paint thickness measurement for robotic spray painting;CIRP Annals - Manufacturing Technology,2001

3. Robotic paint automation: the pros and cons of using robots in your paint finishing system;Metal Finishing,2010

4. The ergonomics of spray guns- Users' opinions and technical measurements on spray guns compared with previous recommendations for hand tools;International Journal of Industrial Ergonomics,2000

5. Musculoskeletal exposure of manual spray painting in the woodworking industry – an ergonomic study on painters;International Journal of Industrial Ergonomics,2000

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3