Optimisation of bottling process using “hard” total quality management elements

Author:

Oji Benjamin Chukudi,Oke Sunday Ayoola

Abstract

PurposeThere is growing evidence of a knowledge gap in the association of maintenance with production activities in bottling plants. Indeed, insights into how to jointly optimise these activities are not clear. In this paper, two optimisation models, Taguchi schemes and response surface methodology are proposed.Design/methodology/approachBorrowing from the “hard” total quality management elements in optimisation and prioritisation literature, two new models were developed based on factor, level and orthogonal array selection, signal-to-noise ratio, analysis of variance and optimal parametric settings as Taguchi–ABC and Taguchi–Pareto. An additional model of response surface methodology was created with analysis on regression, main effects, residual plots and surface plots.FindingsThe Taguchi S/N ratio table ranked planned maintenance as the highest. The Taguchi–Pareto shows the optimal parametric setting as A4B4C1 (28 h of production, 30.56 shifts and 37 h of planned maintenance). Taguchi ABC reveals that the planned maintenance and number of shifts will influence the outcome of production greatly. The surface regression table reveals that the production hours worked decrease at a value of planned maintenance with a decrease in the number of shifts.Originality/valueThis is the first time that joint optimisation for bottling plant will be approached using Taguchi–ABC and Taguchi–Pareto. It is also the first time that response surface will be applied to optimise a unique platform of the bottling process plant.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting,Business and International Management,General Decision Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3