Complete coverage path planning of mobile robots for humanitarian demining

Author:

Đakulovic Marija,Petrovic Ivan

Abstract

PurposeThe purpose of this paper is to present a path planning algorithm for a non‐circular shaped mobile robot to autonomously navigate in an unknown area for humanitarian demining. For that purpose the path planning problem comes down to planning a path from some starting location to a final location in an area so that the robot covers all the reachable positions in the area while following the planned path.Design/methodology/approachThe proposed algorithm uses occupancy grid map representation of the area. Every free cell in the grid map represents a node in the graph being searched to find the complete coverage path. The complete coverage path is followed by the dynamic window algorithm, which includes robot's kinematic and dynamic constraints.FindingsThe proposed algorithm finds the complete coverage path in the graph accounting for the dimensions of the mobile robot, where non‐circular shaped robots can be easily included. The algorithms are implemented under the ROS (robot operating system) and tested in the stage 3D simulator for mobile robots with a randomly generated simulation map of an unknown area.Research limitations/implicationsSome parts of the area close to obstacles are hard to cover due to complex non‐circular shaped robot and non‐perfect path following. The future work should include better path following algorithm.Practical implicationsThe proposed algorithm has shown itself as effective and could meet the working demands of humanitarian demining.Originality/valueThe algorithm proposed in the paper enables complete coverage path planning of non‐circular shaped robots in unknown areas.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3