3D hybrid path planning for optimized coverage of agricultural fields: A novel approach for wheeled robots

Author:

Pour Arab Danial12ORCID,Spisser Matthias2,Essert Caroline1

Affiliation:

1. ICube Université de Strasbourg Illkirch France

2. T&S ‐ Technology and Strategy Strasbourg Schiltigheim France

Abstract

AbstractOver the last few decades, the agricultural industry has made significant advances in autonomous systems, such as wheeled robots, with the primary objective of improving efficiency while reducing the impact on the environment. In this context, determining a path for the robot that optimizes coverage while taking into account topography, robot characteristics, and operational requirements, is critical. In this paper, we present H‐CCPP, a novel hybrid method that combines the comprehensive coverage benefits of our previous approach O‐CCPP with the computational efficiency of the Fields2Cover algorithm. Besides optimizing coverage area, overlaps, and overall travel time, it significantly improves the computation process, and enhances the flexibility of trajectory generation. H‐CCPP also considers terrain inclination to address soil erosion and energy consumption. In an effort to support this innovative approach, we have also created and made available a public data set that includes both 2D and 3D representations of 30 agricultural fields. This resource not only allows us to illustrate the effectiveness of our approach but also provides invaluable data for future research in complete coverage path planning (CCPP) for modern agriculture.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3