Path Planning for Robotic Demining: Robust Sensor-Based Coverage of Unstructured Environments and Probabilistic Methods

Author:

Acar Ercan U.1,Choset Howie1,Zhang Yangang1,Schervish Mark1

Affiliation:

1. Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213 USA

Abstract

Demining and unexploded ordnance (UXO) clearance are extremely tedious and dangerous tasks. The use of robots bypasses the hazards and potentially increases the efficiency of both tasks. A first crucial step towards robotic mine/UXO clearance is to locate all the targets. This requires a path planner that generates a path to pass a detector over all points of a mine/UXO field, i.e., a planner that is complete .The current state of the art in path planning for mine/UXO clearance is to move a robot randomly or use simple heuristics . These methods do not possess completeness guarantees which are vital for locating all of the mines/UXOs. Using such random approaches is akin to intentionally using imperfect detectors. In this paper, we first overview our prior complete coverage algorithm and compare it with randomized approaches. In addition to the provable guarantees, we demonstrate that complete coverage achieves coverage in shorter time than random coverage. We also show that the use of complete approaches enables the creation of a filter to reject bad sensor readings, which is necessary for successful deployment of robots. We propose a new approach to handle sensor uncertainty that uses geometrical and topological features rather than sensor uncertainty models. We have verified our results by performing experiments in unstructured indoor environments. Finally, for scenarios where some a priori information about a minefield is available, we expedite the demining process by introducing a probabilistic method so that a demining robot does not have to perform exhaustive coverage.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Full Coverage Path Planning for Torpedo-Type AUVs’ Marine Survey Confined in Convex Polygon Area;Journal of Marine Science and Engineering;2024-09-02

2. Coverage Path Planning with Adaptive Hyperbolic Grid for Step-Stare Imaging System;Drones;2024-06-04

3. Multiple chromosomes particle swarm optimization-based coverage path planning for complex surfaces spray painting;International Journal of Advanced Robotic Systems;2024-03-01

4. Complete and Near-Optimal Robotic Crack Coverage and Filling in Civil Infrastructure;IEEE Transactions on Robotics;2024

5. Coverage Path Planning with Minimum Cost Suitable for Sidewalk;2023 3rd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3