Complete coverage path planning for wheeled agricultural robots

Author:

Pour Arab Danial12,Spisser Matthias2,Essert Caroline1

Affiliation:

1. ICube, CNRS (UMR 7357) Université de Strasbourg Illkirch France

2. T&S—Technology and Strategy Strasbourg Schiltigheim France

Abstract

AbstractIn the agricultural industry, an evolutionary effort has been made over the last two decades to achieve precise autonomous systems to perform typical in‐field tasks, including harvesting, mowing, and spraying. One of the main objectives of an autonomous system in agriculture is to improve the efficiency while reducing the environmental impact and cost. Due to the nature of these operations, complete coverage path planning (CCPP) approaches play an essential role to find an optimal path which covers the entire field while taking into account land topography, operation requirements, and robot characteristics. The aim of this paper is to propose a CCPP approach defining the optimal movements of mobile robots over an agricultural field. First, a method based on tree exploration is proposed to find all potential solutions satisfying some predefined constraints. Second, a similarity check and selection of optimal solutions method is proposed to eliminate similar solutions and find the best solutions. The optimization goals are to maximize the coverage area and to minimize overlaps, nonworking path length, and overall travel time. To explore a wide range of possible solutions, our approach is able to consider multiple entrances for the robot. For fields with a complex shape, different dividing lines to split them into simple polygons are also considered. Our approach also computes the headland zones and covers them automatically which leads to a high coverage rate of the field.

Funder

Association Nationale de la Recherche et de la Technologie

Publisher

Wiley

Subject

Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3