Neurodynamics-based leader-follower formation tracking of multiple nonholonomic vehicles

Author:

Yi Guo,Mao Jianxu,Wang Yaonan,Zhang Hui,Miao Zhiqiang

Abstract

Purpose The purpose of this paper is to consider the leader-following formation control problem for nonholonomic vehicles based on a novel biologically inspired neurodynamics approach. Design/methodology/approach The interactions among the networked multi-vehicle system is modeled by an undirected graph. First, a distributed estimation law is proposed for each follower vehicle to estimate the state including the position, orientation and linear velocity of the leader. Then, a distributed formation tracking control law is designed based on the estimated state of the leader, where a bio-inspired neural dynamic is introduced to solve the impractical velocity jumps problem. Explicit stability and convergence analyses are presented using Lyapunov tools. Findings The effectiveness and efficiency of the proposed control law are demonstrated by numerical simulations and physical vehicle experiments. Consequently, the proposed protocol can successfully achieve the desired formation under connected topologies while tracking the trajectory generated by the leader. Originality/value This paper proposes a neurodynamics-based leader–follower formation tracking algorithm for multiple nonholonomic vehicles.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference38 articles.

1. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry;Photogrammetric Engineering & Remote Sensing,2015

2. Behavior-based formation control for multirobot teams;IEEE Transactions on Robotics and Automation,1998

3. A coordination architecture for spacecraft formation control;IEEE Transactions on Control Systems Technology,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3