An Adaptive Control Based on Improved Gray Wolf Algorithm for Mobile Robots

Author:

Xue Haoran1ORCID,Lu Shouyin1,Zhang Chengbin1

Affiliation:

1. School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China

Abstract

In this paper, a novel intelligent controller for the trajectory tracking control of a nonholonomic mobile robot with time-varying parameter uncertainty and external disturbances in the case of tire hysteresis loss is proposed. Based on tire dynamics principles, a dynamic and kinematic model of a nonholonomic mobile robot is established, and the neural network approximation model of the system’s nonlinear term caused by many coupling factors when the robot enters a roll is given. Then, in order to adaptively estimate the unknown upper bounds on the uncertainties and perturbations for each subsystem in real time, a novel adaptive law employed online as a gain parameter is designed to solve the problem of inter-system coupling and reduce the transient response time of the system with lower uncertainties. Additionally, based on improved gray wolf optimizer and fuzzy system techniques, an adaptive algorithm using the gray wolf optimizer study space as the output variable of the fuzzy system to expand the search area of the gray wolves is developed to optimize the controller parameters online. Finally, the efficacy of the proposed intelligent control scheme and the feasibility of the proposed algorithm are verified by the 2023a version of MATLAB/Simulink platform.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3