Author:
Z.Q. Wang,X.Q. Liu,X.R. Wang,C.Y. Li,N. Yang,T.S. Lin,P. He
Abstract
Purpose
This papers aims to provide a fixed cutter axis control (F-CAC) industrial robot (IR) milling for NURBS surfaces with large fluctuation, which can avoid over-cut and interference during IR milling in contrast to variable cutter axis control (V-CAC) IR milling.
Design/methodology/approach
After the design of a target surface, the IR reciprocating milling trajectory can be obtained using NURBS mapping projection method. A set of interpolation points of the reciprocating trajectory can be calculated using the equi-chord interpolation method. Combining with F-CAC method and curvature estimation, the IR reciprocating trajectory of the tool center point (TCP) without over-cut can be obtained. The programs corresponding to posture control using F-CAC can be generated by IR kinematics.
Findings
In contrast to the V-CAC milling method, the F-CAC method can machine successfully the NURBS surfaces with large fluctuation. The simulation and machining proves that F-CAC is feasible and effective to machine NURBS surface with large fluctuation without over-cut phenomenon. The F-CAC has wide application in carving and woodworking industry at present.
Originality/value
The F-CAC method is very practical and effective for IR milling of complex NURBS surfaces with large fluctuation without over-cut and interference phenomenon.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献