Effect of Ag content on wetting properties and solidus temperature of Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga lead‐free solders
Author:
Lai R.S.,Lin K.L.,Salam B.
Abstract
PurposeTo study the effect of Ag content on the melting temperature and wetting properties of Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga lead‐free Solders.Design/methodology/approachThe solder alloys used in the experiment were Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga (x=0, 0.1, 0.3, 0.5, 1 and 1.5). In this study, the alloys were initially studied using differential scanning calorimetry to determine their melting temperatures. Afterward, the solderability of the solders was studied using wetting balance and contact angle methods. Moreover, the microstructures of the solders were also investigated with an optical microscope, scanning electron microscope, energy dispersive X‐ray, X‐ray diffraction and electron probe micro analysis.FindingsA small increase in Ag content in the Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga solders, from 0.1 to 1.0 wt%, has been found to lower their solidus temperature from 198.05°C to 190.20°C. A Ag content of 1.5 wt% increased the solidus temperature of the studied solder systems to 197.79°C. Furthermore, the study also found that the addition of silver lowered the wetting forces of the studied solders. The formation of multi‐intermetallic layers of Cu‐Zn and Ag‐Zn at the interface between the studied solders and copper might explain the reduction of the wetting forces.Research limitations/implicationsThe silver contents in the studied Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga solders were limited to 0, 0.1, 0.3, 0.5, 1.0 and 1.5 wt%.Practical implicationsUseful literature for solder alloy designers and SMT engineers.Originality/valueThe paper provides the answers to the research question of what is the effect of silver content on the melting temperature and wetting properties of Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga solders.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science
Reference7 articles.
1. Freat, D.R. and Yost, F.G. (1993), “The mechanics of solder alloy wetting and spreading”, Van Nostrand Reinhold, New York, NY. 2. Kariya, Y., Hosoi, T., Terashima, S., Tanaka, M. and Otsuka, M. (2004), “Effect of silver content on the shear fatigue properties of Sn‐Ag‐Cu Flip‐Chip interconnects”, Journal of Electronic Materials, Vol. 33 No. 4, pp. 321‐8. 3. Lin, K.‐L. and Chiu, Y.T. (2005), “The bonding of Sn‐Zn‐Ag‐Al‐Ga lead‐free solder balls on Cu/Ni‐P/Au BGA substrate”, 55th Electronics Components and Technology Conference (ECTC), Orlando, Florida, Vol. 1, pp. 692‐5. 4. Lin, K.‐L., Chen, K.‐I. and Shi, P.‐C. (2003), “A potential drop‐in replacement for eutectic Sn‐Pb solder – the Sn‐Zn‐Ag‐Al‐Ga Solder”, Journal of Electronic Materials, Vol. 32 No. 12, pp. 1490‐5. 5. Liu, N.S. and Lin, K.‐L. (2006), “The effect of Ga content on the wetting reaction and interfacial morphology formed between Sn‐8.55Zn‐0.5Ag‐0.1Al‐xGa solders and Cu”, Scripta Materialia, Vol. 54 No. 2, pp. 219‐24.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|