Finite element model updating of board-level electronic packages by factorial analysis and modal measurements

Author:

Gharaibeh Mohammad

Abstract

Purpose One difficultly in building an effective finite element (FE) model of a board-level package is because of complex structure of the printed circuit board (PCB), as it contains copper layers, woven fabrics, plated-through holes and so forth. Therefore, it is often acceptable to obtain equivalent orthotropic material properties and use them in the simulation. This paper aims to provide a research methodology to produce equivalent FE models for board-level electronic packages. Design/methodology/approach In this methodology, the FE models’ data were correlated with experimental modal analysis results in terms of natural frequencies and mode shapes. Statistical factorial analysis was used to examine the electronic assembly material properties effect on the structure’s resonant frequencies. The equivalent material properties of the PCB were adjusted using the optimization tool available in ANSYS software for free boundary conditions. The equivalent FE model was then validated for the fixed boundary conditions. Findings The resultant FE models were in great match with the measured data in terms of resonant frequencies and mode shapes. The so-developed models can be further used in the analysis of the dynamic response of the electronic packages and solder interconnects. Originality/value The current approach provides a sophisticated research methodology to provide high-accuracy FE models of electronic assemblies subjected to vibration. The main value of this approach is to first test the effect of each material property on the package dynamic characteristics before starting the correlation process, then to automate the correlation algorithm using the built-in FE model updating feature available in ANSYS software.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference23 articles.

1. Gharaibeh, M.A. (2015), “Finite element modeling, characterization and design of electronic packages under vibration”, PhD Dissertation, Department of Mechanical Engineering, STATE UNIVERSITY OF NEW YORK AT BINGHAMTON.

2. Strain correlation: Finite element modeling and experimental data,2013

3. Analytical solution for electronic assemblies under vibration;Journal of Electronic Packaging,2016

4. Modeling and characterization for vibration,2013

5. Board-level drop test: Comparison of two ansys modeling approaches and correlation with testing,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3