Influence of doping Si3N4 nanoparticles on the properties and microstructure of Sn58Bi solder for connecting Cu substrate

Author:

Deng Kai,Zhang Liang,Chen Chen,Lu Xiao,Sun Lei,Guo Xing-Yu

Abstract

Purpose This study aims to explore the feasibility of adding Si3N4 nanoparticles to Sn58Bi and provides a theoretical basis for designing and applying new lead-free solder materials for the electronic packaging industry. Design/methodology/approach In this paper, Sn58Bi-xSi3N4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0 Wt.%) was prepared for bonding Cu substrate, and the changes in thermal properties, wettability, microstructure, interfacial intermetallic compound and mechanical properties of the composite solder were systematically studied. Findings The experiment results demonstrate that including Si3N4 nanoparticles does not significantly impact the melting point of Sn58Bi solder, and the undercooling degree of solder only fluctuates slightly. The molten solder spreading area reached a maximum of 96.17 mm2, raised by 19.41% relative to those without Si3N4, and the wetting angle was the smallest at 0.6 Wt.% of Si3N4, with a minimum value of 8.35°. When the Si3N4 nanoparticles reach 0.6 Wt.%, the solder joint microstructure is significantly refined. Appropriately adding Si3N4 nanoparticles will slightly increase the solder alloy hardness. When the concentration of Si3N4 reaches 0.6 Wt.%, the joints shear strength reached 45.30 MPa, representing a 49.85% increase compared to those without additives. A thorough examination indicates that legitimately incorporating Si3N4 nanoparticles into Sn58Bi solder can enhance its synthetical performance, and 0.6 Wt.% is the best addition amount in our test setting. Originality/value In this paper, Si3N4 nanoparticles were incorporated into Sn58Bi solder, and the effects of different contents of Si3N4 nanoparticles on Sn58Bi solder were investigated from various aspects.

Publisher

Emerald

Reference23 articles.

1. Microstructure and properties of Sn58Bi/Ni solder joint modified by Mg particles;Journal of Materials Research and Technology,2023

2. Mechanical properties and microstructure evolution of Cu/Sn58Bi/Cu solder joint reinforced by B4C nanoparticles;Journal of Materials Research and Technology,2023

3. Review of ultrasonic-assisted soldering in Sn-based solder alloys;Journal of Materials Science: Materials in Electronics,2023

4. Particle-Size-Dependent anticorrosion performance of the Si3N4-nanoparticle-incorporated electroless Ni-P coating;Coatings,2021

5. Synthesis and characterization of ceramic nanoparticles reinforced lead-free solder;Ceramics International,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3