Effect of sintering temperature on ratcheting-fatigue behavior of nanosilver sintered lap shear joint

Author:

Fang Danqing,Wu Chengjin,Tan Yansong,Li Xin,Gao Lilan,Zhang Chunqiu,Zhao Bingjie

Abstract

Purpose The paper aims to study the effect of sintering temperature on the microstructure, shear strength and ratcheting fatigue life of nanosilver sintered lap shear joint. In addition, the Gerber model is used to predict the ratcheting fatigue lives of nanosilver sintered lap shear joints at different sintering temperatures. Design/methodology/approach In this paper, the nanosilver sintered lap shear joints were prepared at three sintering temperatures of 250 °C, 280 °C and 310 °C. The bonding quality was characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscope and shear tests, and the long-term reliability was studied by conducting ratcheting fatigue tests. In addition, three modified models based on Basquin equation were used to predict the ratcheting fatigue life of nanosilver sintered lap shear joint and their accuracies were evaluated. Findings When the sintering temperature is 250°C, the nanosilver sintered lap shear joint shows the porosity of 22.9 ± 1.6 %, and the shear strength of 22.3 ± 2.4 MPa. Raising the sintering temperature enhances silver crystallite size, strengthens sintering necks, thus improves shear strength and ratcheting fatigue life in joints. In addition, the ratcheting fatigue lives of the joints sintered at different temperatures are effectively predicted by three equivalent force models, and the Gerber model shows the highest life prediction accuracy. Research limitations/implications The sintered silver bondline is suffering a complex stress state. The study only takes the shear stress into consideration. The tensile stress and the combination of shear stress and tensile stress can to be considered in the future study. Practical implications The paper provides the experimental and theoretical support for robust bonding and long-term reliability of sintered silver structure. Social implications The introduced model can predict the ratcheting fatigue lives of the joints sintered at different temperatures, which shows a potential in engineering applications. Originality/value The study revealed the relationship between the sintering temperature and the microstructure, the shear strength and the ratcheting fatigue life of the joint. In addition, the Gerber model can predict the ratcheting fatigue life accurately at different sintering temperatures.

Publisher

Emerald

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3