Fault tolerant control against actuator faults based on enhanced PID controller for a quadrotor

Author:

Ermeydan AhmetORCID,Kiyak EmreORCID

Abstract

Purpose The purpose of this paper is to present fault tolerant control of a quadrotor based on the enhanced proportional integral derivative (PID) structure in the presence of one or more actuator faults. Design/methodology/approach Mathematical model of the quadrotor is derived by parameter identification of the system for the simulation of the UAV dynamics and flight control in MATLAB/Simulink. An improved PID structure is used to provide the stability of the nonlinear quadcopter system both for attitude and path control of the system. The results of the healty system and the faulty system are given in simulations, together with motor dynamics. Findings In this study, actuator faults are considered to show that a robust controller design handles the loss of effectiveness in motors up to some extent. For the loss of control effectiveness of 20 per cent in first and third motors, psi state follows the reference with steady state error, and it does not go unstable. Motor 1 and Motor 3 respond to given motor fault quickly. When it comes to one actuator fault, steady state errors remain in some states, but the system does not become unstable. Originality/value In this paper, an enhanced PID controller is proposed to keep the quadrotor stable in case of actuator faults. Proposed method demonstrates the effectiveness of the control system against motor faults.

Publisher

Emerald

Subject

Aerospace Engineering

Reference30 articles.

1. Fault-tolerant fuzzy gain-scheduled PID for a quadrotor helicopter testbed in the presence of actuator faults,2012

2. Bresciani, T. (2008), “Modelling, identification and control of a quadrotor helicopter”, Msc thesis, Lund University, Sweden.

3. Control system design of a quad-rotor with collision detection;Aircraft Engineering and Aerospace Technology,2015

4. Control, navigation and collision avoidance for an unmanned aerial vehicle;Sensors and Actuators, A: Physical,2013

5. Direct method based control system for an autonomous quadrotor;Journal of Intelligent & Robotic Systems,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3