Optimal control during drilling in GFRP composite laminates

Author:

Pal Singh Amrinder,Sharma Manu,Singh Inderdeep

Abstract

Purpose – Damage due to delamination is an important issue during drilling in polymer-matrix composites (PMCs). It depends on thrust force and torque which are functions of feed rate. Transfer function of thrust force with feed rate and torque with feed rate is constructed through experiments. These transfer functions are then combined in state-space to formulate a sixth-order model. Then thrust force and torque are controlled by using optimal controller. The paper aims to discuss these issues. Design/methodology/approach – A glass fiber reinforced plastic composite is drilled at constant feed rate during experimentation. The corresponding time response of thrust force and torque is recorded. Third-order transfer functions of thrust force with feed rate and torque with feed rate are identified using system identification toolbox of Matlab®. These transfer functions are then converted into sixth-order combined state-space model. Optimal controller is then designed to track given reference trajectories of thrust force/torque during drilling in composite laminate. Findings – Optimal control is used to simultaneously control thrust force as well as torque during drilling. There is a critical thrust force during drilling below which no delamination occurs. Therefore, critical thrust force profile is used as reference for delamination free drilling. Present controller precisely tracks the critical thrust force profile. Using critical thrust force as reference, high-speed drilling can be done. The controller is capable of precisely tracking arbitrary thrust force and torque profile simultaneously. Findings suggest that the control mechanism is efficient and can be effective in minimizing drilling induced damage in composite laminates. Originality/value – Simultaneous optimal control of thrust force and torque during drilling in composites is not available in literature. Feed rate corresponding to critical thrust force trajectory which can prevent delamination at fast speed also not available has been presented.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modelling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanics of delamination-free drilling in polymer matrix composite laminates: A review;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-06-23

2. Influence of machining parameters on the response variable during drilling of the hybrid laminate;Australian Journal of Mechanical Engineering;2019-12-19

3. Reinforcing Graphene Oxide Nanoparticles to Enhance Viscoelastic Performance of Epoxy Nanocomposites;Journal of Nanoscience and Nanotechnology;2019-07-01

4. Improved mechanical performance of bisphenol-A graphene-oxide nano-composites;Journal of Composite Materials;2017-11-13

5. Optimal control of thrust force for delamination-free drilling in glass-fiber-reinforced plastic laminates;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2016-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3