Improved mechanical performance of bisphenol-A graphene-oxide nano-composites

Author:

Bansal Suneev Anil1,Singh Amrinder Pal1,Kumar Anil2,Kumar Suresh2,Kumar Navin3,Goswamy Jatinder Kumar2

Affiliation:

1. Department of Mechanical Engineering, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India

2. Department of Applied Sciences, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India

3. Department of Mechanical Engineering, Indian Institute of Technology Ropar, India

Abstract

Epoxy resins have been extensively utilized for mechanical strength applications in the field of aerospace, automobiles, marine, defence, etc. Improving the strength as well as fracture behaviour of the light weight materials is challenging. Present work is an attempt to enhance elastic modulus, hardness and fracture resistance simultaneously by reinforcing the epoxy (bisphenol-A) matrix with a new-age two-dimensional atomically thin graphene oxide filler. Wet chemical oxidation method was used to prepare graphene oxide sheets. Morphological study of the synthesized graphene oxide was carried out using scanning electron microscopy. Fourier-transformed infrared, ultraviolet–visible and Raman spectroscopic techniques were also employed to ascertain the synthesis of graphene oxide. The results confirmed the synthesis of well oxidized graphene oxide sheets. The prepared graphene oxide sheets were then sonicated in acetone solution to ensure better dispersion in the bisphenol-A graphene oxide nano-composite using 0.25, 0.5, 1.0 and 1.5 wt.% graphene oxide reinforcement. Solution mixing method was used to synthesize the polymer nano-composite. Scanning electron microscopy results revealed the smooth dispersion of graphene oxide in the bisphenol-A matrix. Nano-indentation of the bisphenol-A graphene oxide nano-composite showed a considerable jump in elastic modulus at 1 wt.% and hardness at 0.50 wt.% of graphene oxide reinforcement. Fracture resistance of bisphenol-A graphene oxide composite as represented by ratio of elastic modulus to hardness was enhanced by 24% as compared to the pristine bisphenol-A. Our results demonstrate a promising way to improve the mechanical characteristics of epoxy resins through graphene oxide reinforcement at low weight percentages.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3